A two-stage classification algorithm for radar targets based on compressive detection

نویسندگان

چکیده

Abstract Algorithms are proposed to address the radar target detection problem of compressed sensing (CS) under conditions a low signal-to-noise ratio (SNR) and signal-to-clutter (SCR) echo signal. The algorithms include two-stage classification for targets based on compressive (CD) without signal reconstruction support vector data description (SVDD) one-class classifier. First, we present sparsity in distance dimension design measurement matrix CD Constant false alarm rate (CFAR) is performed directly complete first-order classification. In simulations, performance similar that traditional matched filtering algorithm, but lower, necessary storage space reduced. Then, power spectrum features extracted from after converted feature domain. SVDD classifier introduced train classify characteristic signals separation alarms. Finally, algorithm verified by simulation. number alarms reduced, probability improved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation-Based Radar Detection Methods

In this paper, radar detection based on Monte Carlo sampling is studied. Two detectors based on Importance Sampling are presented. In these detectors, called Particle Detector, the approximated likelihood ratio is calculated by Monte Carlo sampling. In the first detector, the unknown parameters are first estimated and are substituted in the likelihood ratio (like the GLRT method). In the sec...

متن کامل

A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar

Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...

متن کامل

Classification of polarimetric radar images based on SVM and BGSA

Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...

متن کامل

Compressive radar with off-grid targets: a perturbation approach

Compressed sensing (CS) schemes are proposed for monostatic as well as synthetic aperture radar (SAR) imaging with chirped signals and Ultra-Narrowband (UNB) continuous waveforms. In particular, a simple, perturbation method is developed to reduce the gridding error for off-grid targets. A coherence bound is obtained for the resulting measurement matrix. A greedy pursuit algorithm, Support-Cons...

متن کامل

Simulation-Based Radar Detection Methods

In this paper, radar detection based on Monte Carlo sampling is studied. Two detectors based on Importance Sampling are presented. In these detectors, called Particle Detector, the approximated likelihood ratio is calculated by Monte Carlo sampling. In the first detector, the unknown parameters are first estimated and are substituted in the likelihood ratio (like &#10the GLRT method). In the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EURASIP Journal on Advances in Signal Processing

سال: 2021

ISSN: ['1687-6180', '1687-6172']

DOI: https://doi.org/10.1186/s13634-021-00719-5